Abstract

An IR-vacuum ultraviolet (VUV) ion-dip spectroscopy method is utilized to examine the IR spectrum of acetaldehyde oxide (CH3CHOO) in the overtone CH stretch (2νCH) spectral region. IR activation creates a depletion of the ground state population that reduces the VUV photoionization signal on the parent mass channel. IR activation of the more stable and populated syn-CH3CHOO conformer results in rapid unimolecular decay to OH + vinoxy products and makes the most significant contribution to the observed spectrum. The resultant IR-VUV ion-dip spectrum of CH3CHOO is similar to that obtained previously for syn-CH3CHOO using IR action spectroscopy with UV laser-induced fluorescence detection of OH products. The prominent IR features at 5984 and 6081cm-1 are also observed using UV + VUV photoionization of OH products. Complementary theoretical calculations utilizing a general implementation of second-order vibrational perturbation theory provide new insights on the vibrational transitions that give rise to the experimental spectrum in the overtone CH stretch region. The introduction of physically motivated small shifts of the harmonic frequencies yields remarkably improved agreement between experiment and theory in the overtone CH stretch region. The prominent features are assigned as highly mixed states with contributions from two quanta of CH stretch and/or a combination of CH stretch with an overtone in mode 4. The generality of this approach is demonstrated by applying it to three different levels of electronic structure theory/basis sets, all of which provide spectra that are virtually indistinguishable despite showing large deviations prior to introducing the shifts to the harmonic frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.