Abstract
The protonated HCl dimer and trimer complexes were prepared by pulsed discharges in supersonic expansions of helium or argon doped with HCl and hydrogen. The ions were mass selected in a reflectron time-of-flight spectrometer and investigated with photodissociation spectroscopy in the IR and near-IR regions. Anharmonic vibrational frequencies were computed with VPT2 at the MP2/cc-pVTZ level of theory. The Cl-H stretching fundamentals and overtones were measured in addition to stretch-torsion combinations. VPT2 theory at this level confirms the proton-bound structure of the dimer complex and provides a reasonably good description of the anharmonic vibrations in this system. The trimer has a HCl-HClH+-ClH structure in which a central chloronium ion is solvated by two HCl molecules via hydrogen bonding. VPT2 reproduces anharmonic frequencies for this system, including several combinations involving core ion Cl-H stretches, but fails to describe the relative band intensities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.