Abstract

Infrared spectra of Li(NH3)(n) clusters as a function of size are reported for the first time. Spectra have been recorded in the N-H stretching region for n=4-->7 using a mass-selective photodissociation technique. For the n=4 cluster, three distinct IR absorption bands are seen over a relatively narrow region, whereas the larger clusters yield additional features at higher frequencies. Ab initio calculations have been carried out in support of these experiments for the specific cases of n=4 and 5 for various isomers of these clusters. The bands observed in the spectrum for Li(NH3)(4) can all be attributed to N-H stretching vibrations from solvent molecules in the first solvation shell. The appearance of higher frequency N-H stretching bands for n > or =5 is assigned to the presence of ammonia molecules located in a second solvent shell. These data provide strong support for previous suggestions, based on gas phase photoionization measurements, that the first solvation shell for Li(NH3)(n) is complete at n=4. They are also consistent with neutron diffraction studies of concentrated lithium/liquid ammonia solutions, where Li(NH3)(4) is found to be the basic structural motif.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.