Abstract

Infrared photodissociation spectroscopy of mass-selected [MO(CO2)n]+ (M=Sc, Y, La) complexes indicates that the conversion from the solvated structure into carbonate one can be achieved by the ScO+ cation at n=5 and by the YO+ cation at n=4, while only the solvated structures are observed for the LaO+ cation. These findings suggest that both the ScO+ and YO+ cations are able to fix CO2 into carbonate. Quantum chemical calculations are performed on [MO(CO2)n]+ to identify the structures of the low-lying isomers and to assign the observed spectral features. Theoretical analyses show that the [YO(CO2)n]+ complex has the smallest barrier for the conversion from the solvated structure into carbonate one, while [LaO(CO2)n]+ exhibits the largest conversion barrier among the three metal oxide cations. The present system affords a model in clarifying the effect of different metals in catalytic CO2 transformation at the molecular level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.