Abstract

To explore the impact of fluorination on the hydrogen bond networks of protonated alkylalcohols, infrared spectroscopy and theoretical computations of protonated 2,2,2-trifluoroethanol clusters, H+(TFE)n, (n = 4-7), were performed. It has been demonstrated that the development of the hydrogen bond networks from a linear type to cyclic types occurs in this size region for the protonated alkylalcohol clusters. In contrast, infrared spectroscopy of H+(TFE)n in the OH/CH stretch region clearly indicated that the linear type structures are held in the whole size range, irrespective of temperature of the clusters. The extensive stable isomer structure search of H+(TFE)n based on our latest sampling approach supported the strong preference of the linear type hydrogen bond networks. Detailed analyses of the free OH stretching vibrational bands evidenced the intra- and intermolecular OH⋯FC interactions in the clusters. In addition, infrared spectra of protonated clusters of 2,2-difluoroethanol, 2,2-difluoropropanol, and 3,3,3-trifluoropropanol were measured for n = 4 and 5, and their spectra also indicated the effective inhibition of the cyclic hydrogen bond network formation by the fluorination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call