Abstract

The boron-dinitrogen cation complexes B(NN)3+ and B2(NN)3,4+ are produced in the gas phase and are studied by infrared photodissociation spectroscopy in the N-N stretching vibrational frequency region. The geometric and electronic structures are determined by comparison of the experimental spectra with density functional theory calculations. The B(NN)3+ cation is characterized to have a closed-shell singlet ground state with planar D3h symmetry. The B2(NN)3+ cation is determined to have a B═B bonded (NN)2BBNN structure with C2v symmetry. Two isomers of the B2(NN)4+ cation contribute to the experimental spectrum. One is a N2-tagged complex involving a B2(NN)3+ core ion. Another one is a B-B bonded B2(NN)4+ complex with a planar D2h structure. Bonding analyses reveal that the B-NN interactions in these complexes come mainly from covalent orbital interactions, with the NN → B σ donation being stronger than the B → NN π back-donation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.