Abstract

In situ infrared spectroscopy was applied to elucidate the reaction mechanism of CO hydrogenation over Pd/CeO2. Instead of direct dissociation of CO, a new reaction pathway is proposed for methane formation, involving geminal dicarbonyl intermediates and (HCO)2(a) intermediates, which may be located on the surface of Pd covered with thin layers of reduced ceria (SMSI effect). Transformation of methane formation sites into methanol formation ones by the oxidation with water vapor formed during the CO−H2 reaction is proposed, which may be located on the Pd (111) planes adjacent to ceria support.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.