Abstract

Vibrational infrared spectroscopy, a noninvasive method for probing the structural and dynamic properties of biological membranes, is used to characterize the in vivo and in vitro perturbations of ethanol on various liver plasma membrane preparations derived from alcohol-treated rats. Spectral frequency shifts of the bilayer lipid chain methylene carbon-hydrogen symmetric stretching modes indicate that the adaptive response of the liver plasma membranes of the alcohol-treated animals results in an increase in membrane order on the vibrational time scale. Additional in vitro ethanol treatment of these membrane preparations leads to further significant increases in bilayer order. The observed membrane ordering effects are consistent with a bilayer model of partial interdigitation, or chain overlap, of the opposing membrane monolayers near the bilayer center.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call