Abstract

For the fundamental study of oxygen delignification of kraft pulp, structural changes of kraft lignin during alkaline oxygen treatment were investigated with the use of infrared measurement with attenuated total reflectance (ATR) technique. In the neutralized reaction mixture of alkaline oxygen-treated kraft lignin, there is a significant amount of NaCl, so that the spectral changes of water due to the coexistence of NaCl was investigated, and how to remove the huge absorption of NaCl solution is discussed. Sodium vanillate–NaCl solutions were employed as model solutions for the reaction mixture. Partial least square (PLS) regression was applied for the prediction of NaCl concentration, and the spectrum of NaCl solution was subtracted from the spectrum of sodium vanillate–NaCl solution as background measurement. This allowed us to obtain the vanillate spectra free from the absorption of NaCl solution. In addition, the mathematical method for reconstructing the spectrum of NaCl solution is discussed. The spectrum of NaCl solution is reconstructed as the linear combination of basic spectra calculated by singular value decomposition (SVD), and it was subtracted from that of the sodium vanillate–NaCl solution. By this procedure, the vanillate spectra were also obtained quantitatively, as has been demonstrated in PLS regression study. It was also confirmed that the quantitative spectra of high molecular weight fraction of alkaline oxygen-treated kraft lignin were obtained by the use of this reconstruction technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call