Abstract
AbstractInfrared (IR) spectra in the fundamental and near-IR regions were obtained for Na-saturated Wyoming montmorillonite and reduced-charge Na/Li-saturated Wyoming montmorillonites hydrated under water vapor at 50% RH and dehydrated under vacuum. For the Na-montmorillonite, changes in the intensities of the structural OH-bending modes, particularly that of the MgAlOH group, were observed as the clay was dehydrated. This result was interpreted as evidence that exchangeable Na ions lose solvation water and settle into the ditrigonal cavities on the clay surface as it becomes desiccated. For the Na/Li-montmorillonites, the structural OH-bending modes also decreased in IR intensity because of Li+ migration into the octahedral sheet. The fundamental IR spectra of D2O adsorbed by the montmorillonites showed characteristic absorptions at 2685, 2510, 2400, and 1205 cm-1 that decreased in intensity proportionally to the cation-exchange capacity. This result, along with corroborating data from X-ray powder diffractograms and from near-IR diffuse reflectance spectra of H2O adsorbed by the clays, suggest that the exchangeable cations on Na-montmorillonite dissociated from the clay surface as it hydrated and played a significant role in organizing the structure of adsorbed water at low water contents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.