Abstract

Laser ablated chromium, molybdenum, and tungsten atoms react with germane during condensation in excess noble gases. The chromium reaction stopped at the germyl metal hydride, molybdenum gave some hydride but mostly germylidyne, and tungsten reacted spontaneously to give only the germylidyne species. These molecules were identified by isotopic shifts, density-functional theory product energy and frequency calculations, and comparison to the analogous methane and silane reaction products. Effective bond orders for the HGe[triple bond]MoH3 and HGe[triple bond]WH3 molecules are 2.82 and 2.87 using the B3LYP density functional, and are slightly lower than their silicon and carbon analogues. Our calculated Ge[triple bond]M triple bond lengths for these simple trihydride complexes are 0.05 to 0.10 A shorter than those measured for larger group 6 organometallic complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.