Abstract

Protonated polycyclic aromatic hydrocarbons (H(+)PAHs) have been reported to have infrared (IR) bands at wavenumbers near those of unidentified infrared (UIR) emission bands from interstellar objects. We produced 1-C16H11(+) and 1-C16H11 upon electron bombardment during matrix deposition of p-H2 containing pyrene (C16H10) in a small proportion. Intensities of absorption features of 1-C16H11(+) decreased after the matrix was maintained in darkness or irradiated with light at 365 nm, whereas those of 1-C16H11 increased. The observed line wavenumbers and relative intensities of 1-C16H11(+) and 1-C16H11 agree satisfactorily with the scaled vibrational wavenumbers and IR intensities predicted with the B3PW91/6-311++G(2d,2p) method. Our method, being relatively clean with negligible fragmentation, is applicable to larger H(+)PAH; it has the advantages of producing excellent IR spectra covering a broad spectral range with narrow lines and accurate intensities, so that structural identification among various isomers is feasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call