Abstract

Infrared spectra of HCl(H2O)n clusters, with n = 4-10 and 21, are calculated at T = 50 K from semiempirical Born-Oppenheimer molecular dynamics simulations performed with the PM3-MAIS model. The specific focus of this study is on the relationship between spectroscopic features associated with the presence of the excess proton generated by the HCl dissociation as a function of n and the underlying water hydrogen-bonding topologies. Vibrational modes involving the motion of the excess proton are attributed to specific features appearing at ∼1175 cm(-1) for Zundel-type structures, in the 1670-1800 cm(-1) range for intermediate Zundel-Eigen-type structures, and at ∼2820 cm(-1) for Eigen-type structures. This broad range of vibrational frequencies correlates with the position of the excess proton within the clusters. Overall, the theoretical predictions are in good agreement with the available experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.