Abstract

The simple methylidene and methylidyne complexes (CH2=MHX and CH[triple bond]MH2X; X = F, Cl, Br, and I) are prepared in reactions of laser-ablated Mo and W atoms with the methyl halides and investigated by matrix infrared spectroscopy and density functional theory calculations. These complex structures are photoreversible: visible irradiation converts the methylidene complex to the methylidyne complex, and UV irradiation reverses this effect via alpha-hydrogen migration. While the higher oxidation state complexes are readily formed regardless of halogen size, the Mo methylidyne complex is relatively less favored with increasing halogen size, and the W complex shows the opposite tendency. The group 6 metal methylidenes are predicted to have the most agostically distorted structures among the early transition-metal methylidenes. The computed carbon-metal bond shortens with increasing halogen size for both the methylidene and methylidyne complexes. Harmonic and anharmonic frequencies computed by DFT converge on the experimental values and thus provide support for the identification of these new Mo and W complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.