Abstract

Periodic arrays of gold wires and split ring resonators (SRR) with a minimum feature size of 50 nm are fabricated on low-doped silicon. To our knowledge, the periodic arrangement of SRRs and wires considered in this work has not been studied in the near-infrared domain yet. For normal-incidence conditions, this metamaterial structure exhibits resonances at 70 and 170 THz (i.e., at λ ≈ 4.3 and 1.75 μm), which are identified as LC- and Mie resonances, respectively. These resonances are also observed for the SRRs alone, but the amplitude of the Mie resonance is reinforced due to the coupling between the SRRs and wires. The structure is simulated using finite-element software, while transmission and reflection measurements are performed with a Fourier transform infrared spectrometer. Numerical simulations are found to be in very good agreement with experimental characterizations, thereby showing that the Drude model used in calculations is well suited to simulate gold structures at near-infrared frequencies. Theoretical calculations predict that the metamaterial has a negative permittivity and a negative permeability near each resonance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call