Abstract

In concentrating solar power, high-temperature solar receivers can provide heat to highly efficient cycles for electricity or chemical production. Excessive heating of the fused-silica window and the resulting recrystallization are major problems of high-temperature receivers using windows. Excessive window temperatures can be avoided by applying an infrared-reflective solar-transparent coating on the fused-silica window inside. Both glass temperatures and receiver losses can be reduced. An ideal coating reflects part of the thermal spectrum (λ>2.5 μm) of the hot absorber (1100°C) back onto it without reducing solar transmittance. Extensive radiation simulations were done to screen different filter types. The examined transparent conductive oxides involve a high solar absorptance, inhibiting their use in high-concentration solar systems. Although conventional dielectric interference filters have a low solar absorption, the reflection of solar radiation, which comes from various directions, is too high. It was found that only rugate filters fulfill the requirements for operation under high-flux solar radiation with different incident angles. A thermodynamic qualification simulation of the rugate coating on a window of a flat-plate receiver showed a reduction of almost 175 K in mean window temperature and 11% in receiver losses compared with an uncoated window. For the configuration of a pressurized receiver (REFOS type), the temperature could be reduced by 65 K with slightly reduced receiver losses. Finally, a 25 μm thick rugate filter was manufactured and optically characterized. The measured spectra fitted approximately the design spectra, except for two absorption peaks, which can be avoided in future depositions by changing the deposition geometry and by using in situ monitoring. The issue of this paper is to share the work done on the choice of filter type, filter design, thermodynamic evaluation, and deposition experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.