Abstract

PdCoO2 layered delafossite is the most conductive compound among metallic oxides, with a room-temperature resistivity of nearly 2,mu Omega ,{{{{{rm{cm}}}}}}, corresponding to a mean free path of about 600 Å. These values represent a record considering that the charge density of PdCoO2 is three times lower than copper. Although its notable electronic transport properties, PdCoO2 collective charge density modes (i.e. surface plasmons) have never been investigated, at least to our knowledge. In this paper, we study surface plasmons in high-quality PdCoO2 thin films, patterned in the form of micro-ribbon arrays. By changing their width W and period 2W, we select suitable values of the plasmon wavevector q, experimentally sampling the surface plasmon dispersion in the mid-infrared electromagnetic region. Near the ribbon edge, we observe a strong field enhancement due to the plasmon confinement, indicating PdCoO2 as a promising infrared plasmonic material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.