Abstract

The transition-metal-boron bonding interactions and geometric structures of heterodinuclear transition metal carbonyl cluster cations BM(CO)n+ (M = Co, Ni, and Cu) are studied by a combination of the infrared photodissociation spectroscopy and density functional theory calculations at the B3LYP/def2-TZVP level. The BCu(CO)5+ and BCo(CO)6+ cations are characterized as an (CO)2B-M(CO)3/4+ structure involving an σ-type (OC)2B → M(CO)3,4+ dative bonding with end-on carbonyls, while for BNi(CO)5,6+ complexes with a bridged carbonyl, a 3c-2e bond involving the 5σ electrons of the bridged carbonyl and an electron-sharing bond between the B(CO)2 fragment and the Ni(CO)2,3+ subunits were revealed. Moreover, the fundamental driving force of the exclusive existence of a bridged carbonyl group in the boron-nickel complexes has been demonstrated to stem from the desire of the B and Ni centers for the favorable 8- and 18-electron structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call