Abstract

Copper carbonyl cations of the form Cu(CO)(n)(+) (n = 1-8) are produced in a molecular beam via laser vaporization in a pulsed nozzle source. Mass-selected infrared photodissociation spectroscopy in the carbonyl stretching region is used to study these ions and their argon "tagged" analogues. The geometries and electronic states of these complexes are determined by the number of infrared-active bands, their frequency positions, and their relative intensities compared to the predictions of theory. Cu(CO)(4)(+) has a completed coordination sphere, consistent with its expected 18-electron stability. It also has a tetrahedral structure similar to that of its neutral isoelectronic analog Ni(CO)(4). The carbonyl stretch in Cu(CO)(4)(+) (2198 cm(-1)) is blue-shifted with respect to the free CO vibration (2143 cm(-1)), providing evidence that this is a "non-classical" metal carbonyl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.