Abstract

Infrared detection by binary phosphides is of great interest due to their high carrier mobility, excellent stability, and high absorbance coefficient, as they have a wide range of applications in civil and military fields. As the only metastable phase in gold phosphide, Au2P3 has attracted great attention in fundamental research and optoelectronic applications. Here, we synthesized high-quality and environmentally stable Au2P3 nanosheets through a modified facile one-step mineralization-assisted chemical vapor transport method. Through systematic infrared photoluminescence characterizations, it is found that the as-synthesized Au2P3 nanosheets display an impressive mid-infrared luminescence band centered at about 6.64 μm (0.187 eV) at room temperature. Furthermore, Au2P3-based self-powered photodetectors display outstanding infrared detection performance with D* = 2.9 × 1010 Jones at 1550 nm and D* = 1.9 × 108 Jones at 2611 nm, respectively. Our results suggest that the synthesized Au2P3 nanosheets could be promising candidates for future chip-based infrared nanophotonic and optoelectronic circuitry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call