Abstract

ABSTRACTWe have examined spectrally resolved photoconductivity and photoluminescence from InAs/Ga1–xInxSb strained-layer superlattices, which have been proposed as infrared detectors in the 8-14 μm region. Our measurements indicate that the energy gaps of the strained–layer superlattices are substantially smaller than those of InAs/GaSb superlattices with similar layer thicknesses, in agreement with previous theoretical predictions. Measurements on InAs/Ga1–xInxSb superlattices with x=0 and 0.25 and layer thicknesses of 25 – 45 A indicate superlattice band gaps of 3 – 15 μm, in excellent agreement with gaps calculated by a two band k · p model. Our results demonstrate that far-infrared energy gaps are compatible with the thin layers necessary for strong optical absorption in type-IT superlattices, and suggest that InAs/Ga1–xInxSb superlattices are promising candidates for far-infrared detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.