Abstract

Native mass spectrometry analysis of proteins directly from tissues can be performed by using nanospray-desorption electrospray ionization (nano-DESI). Typically, supplementary collisional activation is essential to decluster protein complex ions from solvent, salt, detergent, and lipid clusters that comprise the ion beam. As an alternative, we have implemented declustering by infrared (IR) photoactivation on a linear ion trap mass spectrometer equipped with a CO2 laser (λ = 10.6 μm). The prototype system demonstrates declustering of intact protein complex ions up to approximately 50 kDa in molecular weight that were sampled directly from brain and eye lens tissues by nano-DESI. For example, signals for different metal binding states of hSOD1G93A homodimers (approximately 32 kDa) separated by only approximately 6 Th (10+ ions) were resolved with IR declustering, but not with collisional activation. We found IR declustering to outperform collisional activation in its ability to reduce chemical background attributable to nonspecific clusters in the nano-DESI ion beam. The prototype system also demonstrates in situ native MS on a low-cost mass spectrometer and the potential of linear ion trap mass spectrometers for this type of analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.