Abstract
An infrared perfect absorber based on a gold nanowire metamaterial cavities array on a gold ground plane is designed. The metamaterial made of gold nanowires embedded in an alumina host exhibits an effective permittivity with strong anisotropy, which supports cavity resonant modes of both electric dipole and magnetic dipole. The impedance of the cavity modes matches the incident plane wave in free space, leading to nearly perfect light absorption. The incident optical energy is efficiently converted into heat so that the local temperature of the absorber will increase. Results show that the designed absorber is polarization-insensitive and nearly omnidirectional for the incident angle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.