Abstract

∼2 μm thick Mn1.56Co0.96Ni0.48O4 (MCN) films have been prepared on a Al2O3 substrate by the chemical solution deposition method. X-ray diffraction and microstructure analyses show good crystallization and the thickness of the films is 2.12 μm. Mid-infrared optical properties of MCN films have been investigated using transmission spectra and infrared spectroscopic ellipsometry. The optical band gap of the MCN film has been derived to be 0.64 eV by assuming a direct transition between valence and conduction bands. The optical constants and thickness of the thin films have been obtained by fitting the measured ellipsometric parameter data with the classical infrared model. The refractive index n of the MCN films decreases as the wavelength increases, but the extinction coefficient k monotonously increases in the wavelength range of 2–7 μm. The maximal n value is 2.63, and the maximal k value is only 0.024. The above results are instructive for the applications of MCN films in infrared detecting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call