Abstract

The traditional melt-quench technique was used to synthesize non-oxide (Ga2Ge)100-x(Ga3Sb2)x (x = 15, 30, 45, 60) glass alloys. The vacuum thermal evaporation unit was used to obtain thin films of prepared sample for investigation of optical properties. SEM, XRD and DSC technique were used to find the thermal and structural properties of the materials. The linear properties like optical bandgap, extinction coefficient for prepared samples have been studied in present paper of Ge-Ga-Sb for application of optoelectronics. The impurities present in the prepared thin films were defined by FTIR transmittance spectra. The extinction coefficient (k) value decreases with increase in Sb concentration while absorption coefficient (α). It was noticed that value of energy bandgap (Eg) derived from Tauc’s plot varies from 2.9 eV to 1.25 eV. Urbach energy is inversely proportional to the bandgap of the materials. As the Sb concentration increases the band gap goes on decreases which result the increase in Urbach energy. Mott and Davis model has been used for explaining decrease in energy gap of prepared glassy alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.