Abstract

Topological Dirac semimetals made of two-dimensional transition-metal dichalcogenides (TMDCs) have attracted enormous interest for use in electronic and optoelectronic devices because of their electron transport properties. As van der Waals materials with a strong interlayer interaction, these semimetals are expected to support layer-dependent plasmonic polaritons yet to be revealed experimentally. Here, we demonstrate the apparent retardation and attenuation of mid-infrared (MIR) plasmonic waves in type-II Dirac semimetal platinum tellurium (PtTe2) nanoribbons and nanoflakes by near-field nanoimaging. The attenuated dispersion relations for the plasmonic modes in the PtTe2 nanoribbons (15-25 nm thick) extracted from the near-field standing-wave patterns are applied for the fitting of PtTe2 permittivity in the MIR regime, indicating that both free carriers and Dirac fermions are involved in MIR light-matter interaction in PtTe2. The annihilation of plasmonic modes in the ultrathin (<10 nm) PtTe2 is observed and analyzed, which manifests no near-field resonant pattern due to the intrinsic layer-dependent optoelectronic properties of PtTe2. These results could pave a potential wave for MIR photodetection and modulation with TMDC semimetals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call