Abstract
A novel scheme for performing infrared multiphoton dissociation (IRMPD) is presented in which a hollow fiber waveguide (HFWG) is used to transmit IR radiation into the ion storage region of a mass spectrometer. Efficient dissociation of oligonucleotide and protein ions is demonstrated on an ESI-FTICR instrument in which IRMPD is performed in the external ion reservoir and on a quadrupole ion trap. Using a simple optical scheme consisting of a single focusing lens and an x, y translator, the 10.6-microm IR laser beam, initially 3.5 mm in diameter, is focused into the vacuum-sealed HFWG. The small internal diameter and the high transfer efficiency of the waveguide allow IR radiation of high power density to be employed for IRMPD. In studies performed on a quadrupole ion trap, a 500-microm-i.d. waveguide was used as a medium to transmit IR radiation directly through a 700-microm orifice in the ring electrode. Efficient IRMPD of both a 12-mer oligonucleotide and the protein melittin were performed at laser powers of 0.5 and 3.2 W, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.