Abstract

Simultaneous visible and long-wave infrared (IR) images of the Moon were used with a simple energy-balance model to study the spatial pattern of lunar surface temperatures. The thermal images were obtained with a radiometrically calibrated, compact, low-cost, commercial IR camera mounted on a small telescope. Differences between the predicted and measured maximum Moon temperatures were used to determine the infrared optical depth (OD), which represents the path-integrated extinction of an elevated layer of wildfire smoke in the atmosphere. The OD values retrieved from the IR Moon images were combined with simultaneous OD measurements from a ground-based, zenith-pointing lidar operating at a wavelength of 532nm to determine an IR-to-visible OD ratio of 0.50±0.18 for moderately aged wildfire smoke aerosol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.