Abstract

We report a new experimental apparatus for infrared microthermography applicable to a wide class of samples including semitransparent ones and perforated devices. This setup is particularly well suited for the thermography of microfabricated devices. Traditionally, temperature calibration is performed using calibration hot plates, but this is not applicable to transmissive samples. In this work a custom designed miniature calibration oven in conjunction with spatial filtering is used to obtain accurate static and transient temperature maps of actively heated devices. The procedure does not require prior knowledge of the emissivity. Calibration and image processing algorithms are discussed and analyzed. We show that relatively inexpensive uncooled bolometer arrays can be a suitable detector choice in certain radiometric applications. As an example, we apply this method in the analysis of temperature profiles of an actively heated microfabricated preconcentrator device that incorporates a perforated membrane and is used in trace detection of illicit substances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call