Abstract
Gaseous iodomethane are naturally emitted in the atmosphere over oceans through the algae and phytoplankton activities. The fate of naturally emitted iodomethane is of great interest because of the oxidizing properties of iodine in the atmosphere and its impact on the catalytic destruction of the ozone layer. Additionally, iodomethane is one of the gaseous species that can be emitted in the case of severe nuclear accident. The radiological impact of gaseous iodomethane is of concerns and requires knowledge about its behavior in the atmosphere. Water is one of the major species in the atmosphere which is responsible for atmospheric aerosol nucleation and thus, for cloud condensation nuclei (CCN). The fundamental knowledge concerning the interaction between methyl iodine and water at the molecular scale contributes to the better understanding of the fate of such species into the atmosphere and their role in CCN formation. Here the microhydration of iodomethane was investigated using cryogenic matrix experiments which were supported by theoretical DFT calculations. A large excess of water regarding CH3I was used in order to mimic atmospheric conditions. Dimers and trimers of CH3I are observed despite the high water amount in the initial mixture together with hetero aggregates between CH3I and water clusters. This may be explained by the low affinity of CH3I with water. Considering the concentration of iodomethane used in our experiments, the aggregates are rather formed in gas phase and not in the matrix cage. The interaction between CH3I and H2O molecules studied experimentally and supported by DFT calculation highlights that, in the atmosphere, gaseous iodomethane and water will likely form association between water and iodomethane aggregates instead of (CH3I)n-(H2O)m hetero complexes. Our results have important consequences for the understanding of the alkyl halide solvation in primary processes and contribute to the understanding of reactive halogen species in tropospheric chemistry. In the context of a nuclear severe accident, our work is contributing to better understand the fate of nuclear species in the atmosphere and thus, the radionuclide dispersion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.