Abstract

Terahertz (THz) radiation is very promising for chemical and biological sensing. One of the ways to realize a THz sensor is exciting multipole localized surface plasmon resonances (LSPRs) on subwavelength corrugated metal disks. In this paper, numerical modeling and analysis of LSPRs on a periodic array of such structures were made. At normal incidence of the incoming wave, only dipole resonances can be excited. An additional C-shaped resonator placed in the vicinity of the disk produces dark multipole modes (quadrupole, hexapole, octupole, and decapole ones) due to hybridization of these modes with the brigth dipole mode of the C resonator. Besides, multipole modes can be excited at oblique illumination of the structure. With increase in the incident angle, the multipole resonances become stronger. The high Q-factor resonance modes observed for PEC disks are wider or disappeared in case of Drude gold permittivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call