Abstract

The infrared photolysis of polyatomic molecules is discussed. Several examples are presented, with products being detected either by chemiluminescence or by laser-induced fluorescence. The technique allows a study both of the dynamics of unimolecular decomposition and of the reaction kinetics and dynamics of the resulting free radicals. Information on the former is deduced from such features as product energy partitioning, product yield as a function of incident laser fluence, and the effect of collisions on the degree and rate of the dissociation. The latter aspect of the technique is powerfully illustrated by the reactions of C2 (X,a) radicals (produced by photolysis of several organic molecules) with such gases as 02 and NO, from which chemiluminescent reaction products have been detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.