Abstract

We have investigated the 1.9-μm IR desorption of hydroquinone in a water/ethanol liquid beam under relatively high desorption laser fluences (1316 and 2632 mJ cm-2 pulse-1). The appearance of the IR desorption/UV ionization TOF mass spectrum of hydroquinone (HQ) is interpreted in terms of dissociation of solvated HQ clusters during the ionization event. The maximum in the hydroquinone desorption velocity distribution is 300 ms-1, and the translational temperature of the desorbed species is approximately 1500 K. We see no evidence for an acoustic compression−ejection mechanism, suggesting that such a process is operative at desorption laser fluences lower than employed here. Our results suggest a general mechanism for the high-powered IR desorption from a liquid beam whereby desorbed species are ejected into the vacuum possessing considerable translational energy but remain internally cool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.