Abstract

Infrared joining of Ti–48Al–2Nb–2Cr using Ti–15Cu–15Ni (wt%) foil as brazing filler metal was investigated at the temperature range of 1100∼1200°C for 30∼60 s in a flowing argon environment. The compressive tests show three types of fracture morphologies in which type I fails at the joint interface, but types II and III are fractured in the base-metal with the crack direction parallel to and perpendicular to the loading axis, respectively. Most of joined specimens were fractured through the base metal indicating that the infrared joined interface has relatively good joint strength. The compressive strength of type I specimen is about 319–322 MPa. Experimental results show that the shorter the real holding time or the higher the joining temperature, the larger the strength variation will be. The observed interfacial microstructures of Ti–48Al–2Nb–2Cr joint interfaces indicate that seven characteristic zones can be distinguished in the joint interfaces and each characteristic structure corresponds to one or more stable phases at T w temperature. The observed microstructures and their evolutions of each zone are explained in detail in this study. The major difference between joint interfaces of Ti–48Al–2Nb–2Cr and Ti 50 Al 50 alloys takes place on the base-metal interface zone and the columnar two-phase zone. The existence of Nb and Cr atoms in Ti–48Al–2Nb–2Cr alloy also has some influences on the microstructural evolution of the columnar two-phase zone and the continuous α 2 -layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.