Abstract
Infrared-infrared double resonance spectroscopy is used as a probe of the vibrational dynamics of cyanoacetylene in helium droplets. The nu1 C-H stretching vibration of cyanoacetylene is excited by an infrared laser and subsequent vibrational relaxation results in the evaporation of approximately 660 helium atoms from the droplet. A second probe laser is then used to excite the same C-H stretching vibration downstream of the pump, corresponding to a time delay of approximately 175 micros. The hole burned by the pump laser is narrower than the single resonance spectrum, owing to the fact that the latter is inhomogeneously broadened by the droplet size distribution. The line width of the hole is characteristic of another broadening source that depends strongly on droplet size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.