Abstract
The 2-D maximum entropy method not only considers the distribution of the gray information, but also takes advantage of the spatial neighbor information with using the 2-D histogram of the image. As a global threshold method, it often gets ideal segmentation results even when the image’s signal noise ratio (SNR) is low. However, its time-consuming computation is often an obstacle in real time application systems. In this paper, the image thresholding approach based on the index of entropy maximization of the 2-D grayscale histogram is proposed to deal with infrared image. The threshold vector ( t, s), where t is a threshold for pixel intensity and s is another threshold for the local average intensity of pixels, is obtained through a new optimization algorithm, namely, the particle swarm optimization (PSO) algorithm. PSO algorithm is realized successfully in the process of solving the 2-D maximum entropy problem. The experiments of segmenting the infrared images are illustrated to show that the proposed method can get ideal segmentation result with less computation cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.