Abstract

A remote methane detection system has been developed using a single-frequency tunable optical parametric oscillator at 3.4 microm infrared wavelength. The infrared received light is converted by a frequency upconverter with a strong pump beam to near-infrared wavelength at 0.81 microm and detected by a sensitive photomultiplier. The conversion efficiency of the upconverter was 40% for the backscatter signal from a topographic target, and the detector sensitivity was 11 times higher than that of the cooled InAs detector. By raster scanning the infrared beam, imaging was realized for the methane gas plume with an accuracy of 20 parts in 10(6)m at the range of ~2m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.