Abstract

Polyglutamine (polyQ) diseases are devastating neurological disorders that cannot be effectively treated. Repeat-associated non-AUG (RAN) translation has been documented in transcripts in polyQ diseases. RAN products include proteins with polyleucine (polyL) tracts. Similar to polyQ, polyL tends to aggregate, which is toxic to cells and mice. Irradiation with a free electron laser (FEL) tuned at mid-infrared wavelengths can dissociate polyQ aggregates in cultured cells. However, whether FEL dissociates the polyL is unclear. It is also unclear whether brain dysfunction caused by polyL aggregates in mice can be ameliorated by FEL irradiated polyL. Here, we show that FEL at approximately 6 μm can destroy polyL aggregates, as evidenced by scanning electron microscopy, atomic force microscopy, and dot blot analyses. Although polyL aggregates induced low viability and aberrant morphology of cultured astrocytes, FEL irradiated polyL exhibited mild defects. Likewise, the toxicity of polyL-containing microglia in vitro was ameliorated by FEL irradiation. In vivo, mice administered polyL aggregates in the cerebellum induced loss of Purkinje cells, which was ameliorated when FEL irradiated polyL was injected. These results justify the clearing of aggregates by approaches using molecular chaperones, laser irradiation, and ultrasound as a general therapeutic strategy to correct brain dysfunction by the RAN products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.