Abstract

Harmonic oscillator model-space truncations introduce systematic errors to the calculation of binding energies and other observables. We identify the relevant infrared (IR) scaling variable and give values for this nucleus-dependent quantity. We consider isotopes of oxygen computed with the coupled-cluster method from chiral nucleon–nucleon interactions at next-to-next-to-leading order and show that the IR component of the error is sufficiently understood to permit controlled extrapolations. By employing oscillator spaces with relatively large frequencies, well above the energy minimum, the ultraviolet corrections can be suppressed while IR extrapolations over tens of MeVs are accurate for ground-state energies. However, robust uncertainty quantification for extrapolated quantities that fully accounts for systematic errors is not yet developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.