Abstract

There is a steadily growing body of evidence that much of the information available concerning the properties of Langmuir monolayers concerns systems which are not in a state of equilibrium. What are now known to be unrelaxed monolayers of stearyl alcohol exhibit a high surface pressure phase transition whose signature in the isotherm changes from a ‘‘kink’’ (0–8 °C), to a small nearly flat region (8–15 °C), and finally to another kink (at higher temperatures). We have carried out external reflection infrared spectroscopic studies of relaxed monolayers of stearyl alcohol along a representative isotherm from each of the mentioned temperature regions. The results of our studies indicate that in each region the surfactant hydrocarbon chain becomes more ordered (i.e., has fewer gauche conformations) as the surface pressure is increased. We find that (i) at 5 °C, throughout the surface pressure range where the change in intramolecular chain order occurs, the collective tilt of the hydrocarbon chains remains nearly constant. For this isotherm the kink signals the point at which the hydrocarbon chains have achieved a very high degree of intramolecular order, perhaps the all-trans limit. (ii) In the 11 °C monolayer, in the phase often referred to as ‘‘superfluid’’, the intramolecular disorder in the hydrocarbon chains is measurably greater than in the equivalent phases in the higher and lower temperature regions. We also show that in the relaxed monolayer the nearly flat portion of the isotherm observed in the unrelaxed monolayer is almost totally absent, leaving only a kink very similar to those observed at higher and lower temperatures. (iii) At 25 °C, although the hydrocarbon chains in the relaxed monolayer attain a relatively high degree of intramolecular order, the high surface pressure phase transition is not observed. Instead, the surface pressure levels off at a value below that at which the transition is expected, and below the equilibrium spreading pressure. We suggest that the leveling off at the surface pressure signals that molecules from the monolayer are forced into solution. (iv) At low surface pressure the spectroscopic data imply that the monolayer consists of a heterogeneous array of ordered islands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call