Abstract

The infrared (IR) excess from OB stars is commonly considered to be a contribution from ionized stellar wind or circumstellar dust. With the newly published Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST)-OB catalog and Galactic O-Star Spectroscopic Survey data, this work steps further on understanding the IR excess of OB stars. Based on a forward-modeling approach comparing the spectral slope of observational spectral energy distributions and photospheric models, 1147 stars are found to have IR excess out of 7818 stars with good-quality photometric data. After removing the objects in the sightline of dark clouds, 532 (∼7%) B-type stars and 118 (∼23%) O-type stars are identified to be true OB stars with circumstellar IR excess emission. The ionized stellar wind model and the circumstellar dust model are adopted to explain the IR excess, and Bayes factors are computed to quantitatively compare the two. It is shown that the IR excess can be accounted for by the stellar wind for about 65% cases, of which 33% by free–free emission and 32% by synchrotron radiation. Other 30% sources could have and 4% should have a dust component or other mechanisms to explain the sharp increase in flux at λ > 10 μm. The parameters of the dust model indicate a large-scale circumstellar halo structure, which implies the origin of the dust from the birthplace of the OB stars. A statistical study suggests that the proportion with IR excess in OB stars increases with the stellar effective temperature and luminosity, and that there is no systematic change in the mechanism for IR emission with stellar parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call