Abstract

The vibrational frequencies of the N−H stretching modes of aniline, after forming a strong H-bonded complex with diethyl ether (DEE), are measured with infrared depletion spectroscopy that uses cluster-size-selective REMPI time-of-flight mass spectrometry. Two strong absorption features observed at 3372 and 3478 cm-1 are assigned to the H-bonded and free N−H stretching vibrations of the 1:1 aniline−DEE complex. The spectral broadening observed for the free and H-bonded N−H stretching modes indicates mode-specific vibrational energy dynamics. While the narrow bandwidth (≈3 cm-1) of the N−H stretch at 3478 cm-1 incorporates all the common broadening mechanisms including IVR, the broader (≈10 cm-1) absorption feature at 3372 cm-1 suggests vibrational predissociation/IVR of the H-bonded complex, with a subpicosecond lifetime. The red shifts of the N−H stretching vibrations of aniline agree with the ab initio calculated (MP2/6-31G**) aniline−DEE structure in which one of the N−H bonds of aniline interacts with the oxygen atom of DEE through a hydrogen bond, giving a binding energy of 13 kJ mol-1 with due corrections for BSSE and zero-point energy. The electronic 0−0 band origin for the S1 ← S0 transition is observed at 33292 cm-1, giving a significant red shift of 737 cm-1 from that of the bare aniline. The vibrational bands associated with the R2PI spectrum are assigned to the intermolecular modes of the complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.