Abstract
NASA plans to launch a Terrestrial Planet Finder (TPF) mission in 2014 to detect and characterize Earth-like planets around nearby stars, to perform comparative planetology studies, and to obtain general astrophysics observations. As part of our recently completed TPF Mission Architecture study for NASA/JPL we developed the conceptual design for a Large Aperture IR Coronagraph that meets these mission objectives. This paper describes the optical design of the telescope and the coronagraph to detect and characterize exo-solar planets. The telescope design was optimized to provide a well-corrected image plane that is large enough to feed several instruments and control scattered light while accommodating packaging for launch and manufacturing limitations. The coronagraph was designed to provide a well corrected field of view with a radius > 5 arcsec around the star it occults in the 7-17 microns wavelength region. A design for this instrument as well as results of a system simulation model are presented. The methodology for wavefront error correction and control of scattered and diffracted light are discussed in some detail as they are critical parameters to enable detecting planets at separations of down to ~λ/D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.