Abstract
We use infrared (IR) and Raman spectroscopies to investigate the optically active phonon modes in InP nanoparticles and InP/II–VI core-shell nanoparticles fabricated by similar colloidal chemistry methods. The IR transmission spectra of several InP nanoparticle samples exhibit a common absorption feature, which we assign to the Fröhlich mode. The Raman results for the same samples show transverse and longitudinal optical phonon peaks, and scattering strength in between due to surface optical (SO) modes. Infrared spectra of the InP/ZnSe core-shell nanoparticles ( T = 8 – 300 K ) exhibit three absorption features, one due to the InP core, and the others associated with the ZnSe shell layer. Raman measurements (12–292 K) also show three phonon-related peaks, whose intensities vary sharply with temperature. The frequencies of the IR and Raman lines are in approximate accord with dielectric continuum theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.