Abstract

A novel selective synthesis of the unsymmetrically substituted tetrathiafulvalene dimethyltrimethylene-tetrathiafulvalene (DMtTTF) is described together with its electrocrystallization to the known conducting mixed-valence ClO4– and ReO4– salts. Infrared (IR) and Raman spectra of the two isostructural quasi-one-dimensional cation radical salts (DMtTTF)2X (X = ReO4–, ClO4–) are investigated as a function of temperature (T = 5–300 K). At ambient temperature, these salts show metallic-like properties and below Tρ = 100–150 K, they undergo a smeared transition to semiconducting state. To study this charge localization, we measured temperature dependence of polarized IR reflectance spectra (700–16 000 cm–1) and Raman spectra (150–3500 cm–1, excitation λ = 632.8 nm) of single crystals. For both compounds, the Raman data and especially the bands related to the C=C stretching vibration of the DMtTTF molecule show that the charge distribution on molecules is uniform down to the lowest temperatures. Similarly, IR data confirm that down to the lowest temperatures, there is neither charge ordering nor important modification of the electronic structure. However, the temperature dependence of Raman spectra of both salts reveals a regime change at about 150 K. Additionally, using Density Functional Theory (DFT) methods, the normal vibrational modes of the neutral DMtTTF0 and cationic DMtTTF+ species and also their theoretical IR and Raman spectra were calculated. The theoretical data were compared with the experimental IR and Raman spectra of neutral DMtTTF0 molecule. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call