Abstract
To investigate the molecular structural disorders of cancerous skin. Human malignant melanoma and basal cell carcinoma biopsies were used for the investigation. Fourier transform infrared (FT-IR), Raman spectroscopy, and scanning electron microscopy were utilized. Spectral differences between healthy, basal cell carcinoma and melanoma tissues were recorded. The FT-IR bands of vasCH2, vsCH2 and Raman vsCH3 of cell membrane lipids were increased in intensity in melanoma due to an increased lipophilic environment. The FT-IR band at 1,744 cm-1 assigned to malondialdehyde can be used as a band diagnostic of cancer progression. The amide I bands at 1,654 cm-1 and 1,650 cm-1 for Raman and FT-IR, respectively were broader in spectra from melanoma, reflecting changes of protein secondary structure from α-helix to β-sheet and random coil. The intensity of the FT-IR band at 1,046 cm-1 was increased in melanoma, suggesting glycosylation of the skin upon cancer development. Another band that might be considered as diagnostic was found at about 815 cm-1 in melanoma and was attributed to Z-DNA configuration. As far as we know, this is the first time that scanning electron microscopy revealed that metal components of titanium alloys from tooth implants were transferred to melanoma tissue taken from the back of one patient. Vibrational spectroscopy highlighted increased glycosylation in melanoma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.