Abstract

Infrared and Raman spectra of cubic magnesium caesium phosphate hexahydrate, MgCsPO4·6H2O (cF100), and its partially deuterated analogues were analyzed and compared to the previously studied spectra of the hexagonal analogue, MgCsPO4·6H2O (hP50). The vibrational spectra of the cubic and hexagonal dimorphic analogues are similar, especially in the regions of HOH stretching and bending vibrations. In the difference IR spectrum of the slightly deuterated analogue (<5% D), one distinctive band appears at 2260cm−1 with a small shoulder at around 2170cm−1, but only one band is expected in the region of the OD stretchings of isotopically isolated HDO molecules. The small weak band could possibly result from second-order transitions (a combination of HDO bending and some libration of the same species) rather than statistical disorder of the water molecules. By comparing the IR spectra in the region of external vibrations of water molecules of the protiated compound recorded at RT (room temperature) and at LNT (liquid nitrogen temperature) and those in the series of the partially deuterated analogues, it can be stated with certainty that the bands at 924 and 817cm−1 result from librations of water molecules, rocking and wagging respectively. And the band at 429cm−1 can be safely attributed to a stretching Mg–Ow mode. In the ν3(PO4) and ν4(PO4) region in the infrared spectra, one band in each is observed, at 995 and 559cm−1, respectively. In the region of the ν1 modes, in the Raman spectrum of the protiated compound, one very intense band was observed at 930cm−1 which is only insignificantly shifted to 929cm−1 in the spectrum of the perdeuterated compound. The band at 379cm−1 in the Raman spectrum could be assigned to the ν2(PO4) modes. With respect to the phosphate ion vibrations, the comparison between the two polymorphic forms of MgCsPO4·6H2O and their deuterated compounds shows that ν1(PO4) and ν3(PO4) appear at lower wavenumbers in the cubic phase than in the hexagonal phase. These data are in full agreement with the lower repulsion potential at the cubic lattice sites compared with that for the hexagonal lattice sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.