Abstract

Infrared spectra of the pyrolysis gases of polyurethane foam flame retarded by MPOP, MP, MC, magnesium hydroxide, or antimony trioxide flame retardants was analyzed online by FTIR method. At 600°C, the polyurethane foam flame retarded by MPOP, MP, MC, magnesium hydroxide or antimony trioxide flame retardants released more hydrogen cyanide than the pure polyurethane foam, proved that the MPOP, MP, MC and magnesium hydroxide flame retardants could change the law that the polyurethane released hydrogen cyanide. At 600 °C, the peak of C=O stretching vibration at 1730cm-1did not appear for the flame-retardant polyurethane, indicating that the flame retardants can make the polyurethane rapidly carbonize and the fewer C=O intermediate was produced. The absorbent peaks of the fire-retardant samples at 1604cm-1, 1538 cm-1, 1250 to 1230 cm-1and 1450cm-1implied that the flame retardants could delay the oxidative decomposition of the polyurethane component at 600 °C, so that more components may be carbonized. When increasing the pyrolysis temperature, the perlite would make polyurethane foam release fewer hydrogen cyanide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call