Abstract

In this study, we compared the effects of vitamin K(2) menatetrenone on bone mechanical properties in rats fed a low-magnesium (Mg) diet. In addition, the mechanism of bone quality was examined using Fourier transform infrared imaging (FTIRI). Thirty 4-week-old male Wistar rats were divided into three groups: intact, low-Mg-control, and low-Mg-MK-4 groups. Rats in the low-Mg groups were given a diet containing 6 mg/100 g Mg (intact, 90 mg/100 g). After an 8-week-treatment, the cortical bone mineral content (CtBMC), outer perimeter, and endo perimeter of the femoral diaphysis in the low-Mg-control group were significantly higher, while the maximum load (ML) and elastic modulus (EM) were 81% and 50% of those in the intact group, respectively (respectively, P < 0.05). In the low-Mg-MK-4 group, ML and EM were significantly higher than in the low-Mg-control group (P < 0.05), with no differences in CtBMC. The mineral/matrix ratios for the periosteal and central regions in the low-Mg-control group were 162% and 120% of those in the intact group (both, P < 0.05), respectively. MK-4 significantly inhibited these increases (P < 0.05). We found that the mineral/matrix ratios for the periosteal region of the femoral diaphysis were negatively correlated with EM, suggesting that an increase in the mineral/matrix ratio may be involved in the reduction of EM and that MK-4 may improve EM by improving the mineral/matrix ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call