Abstract

Cathodoluminescence spectra have been measured in hydrothermal and hydrogen-doped ZnO at different excitation densities and temperatures to investigate the emission efficiencies of near-band-edge (NBE), green and yellow luminescence bands. The NBE intensity depends linearly on the electron beam excitation as expected for excitonic recombination character. The intensities of the green and yellow bands are highly dependent not only on the excitation density but also on temperature. At high excitation densities ZnO exhibits dominant green emission at room temperature; the intensity of the green band can be further controlled by doping ZnO with hydrogen, which passivates green luminescence centers. Conversely at small excitation densities (< 0.1 nA) and low temperatures the visible luminescence from ZnO is predominantly yellow due to the abundance of Li in hydrothermal ZnO. The results are explained by differences in the recombination kinetics and the relative concentrations of the green and yellow centers, and illustrate that single-color emission can be achieved in ZnO by adjusting the excitation power and temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call